Функции безмиелиновых волокон

Функции безмиелиновых волокон

Гистологический препарат № 11
Миелиновые нервные волокна. Узловой перехват. Насечки.

Импрегнация серебром. Большое увеличение. Найти:

  1. миелиновое нервное волокно и в нем:
  2. осевой цилиндр,
  3. миелиновый слой оболочки,
  4. насечки миелина,
  5. наружный слой оболочки,
  6. ядра леммоцитов,
  7. узловые перехваты.

Гистологический препарат. Безмиелиновые нервные волокна.
Окраска гематоксилином и эозином. Увеличение большое. Найти:

  1. безмиелиновое нервное волокно и в нем:
  2. осевой цилиндр,
  3. ядра лиммоцитов.

Нервные волокна (neurofibrae) бывают двух видов: миелиновые и безмиелиновые. Оба типа нервных волокон имеют единый план строения и представляют собой отростки нервных клеток (осевые цилиндры), окруженные оболочкой из олигодендроглии-леммоцитов (шванновских клеток). С поверхности к каждому волокну примыкает базальная мембрана с прилегающими к ней коллагеновыми волокнами.

Миелиновые волокна (neurofibrae myelinafae) имеют относительно больший диаметр, сложно устроенную оболочку из леммоцитов и большую скорость проведения нервного импульса (15 — 120 м/сек). В оболочке миелинового волокна выделяют два слоя; внутренний, миелиновый (stratum myelini), более толстый, содержащий много липидов и окрашивающийся осмием в черный цвет. Он состоит из плотноупакованных по спирали вокруг осевого цилиндра слоев-пластин плазматической мембраны леммоцита. Наружный, более тонкий и светлый слой оболочки миелинового волокна, представлен цитоплазмой леммоцита с его ядром. Этот слой называют неврилеммой или шванновской оболочкой. По ходу миелинового слоя имеются косо идущие светлые насечки миелина (incisurae myelini). Это места, где между пластинами миелина проникают прослойки цитоплазмы леммоцита. Сужения нервного волокна, где отсутствует миелиновый слой, называют узловыми перехватами (nodi neurofibrae). Они соответствуют границе двух смежных леммоцитов.

Безмиелиновые нервные волокна (neurofibrae nonmyelinatae) более тонкие, чем миелиновые. В их оболочке, образованной тоже леммоцитами отсутствует миелиновый слой, насечки и перехваты. Такое строение безмиелиновых нервных волокон обусловлено тем, что хотя леммоциты и охватывают осевой цилнидр, но они не закручиваются вокруг него. В один леммоцит при этом может быть погружено несколько осевых цилиндров. Это волокна кабельного типа, Безмиелиновые нервные волокна входят преимущественно в состав вегетативной нервной системы. Нервные импульсы в них распространяются медленнее (1 — 2 м/сек), чем в миелиновых, и имеют тенденцию к рассеиванию и затуханию.

  • Электронная микрофотография. Безмиелиновое нервное волокно. «Атлас», 1970, стр. 140, рис. 197.
  • Электронная микрофотография. Миелиновое нервное волокно. «Атлас», 1970, стр. 137, рис. 192.
  • Электронная микрофотография. Узловой перехват в миелиновом нервном волокне. Строение мезаксона в области насечки миелина. «Атлас», 1970, стр.. 139, рис. 194 и 195.

Нервные окончания

Нервные волокна заканчиваются концевыми нервными аппаратами, называемыми нервными окончаниями (terminationes neruorum). Различают три вида нервных окончаний: эффекторы (эффекторные), рецепторы (чувствительные) и межнейронные связи — синапсы.

Эффекторы (effectores) бывают двигательными и секреторными. Двигательные окончания представляют собой концевые аппараты аксонов моторных клеток (преимущественно передних рогов спинного мозга) соматической или вегетативной нервной системы. Двигательные окончания в поперечно-полосатой мышечной ткани называют нервно-мышечными окончаниями (синапсами) или моторными бляшками. Моторные нервные окончания в гладкой мышечной ткани имеют вид пуговчатых утолщений или четкообразных расширений. Секреторные окончания выявлены на железистых клетках.

Рецепторы (receptores) представляют собой концевые аппараты дендритов чувствительных нейронов. Одни из них воспринимают раздражение из внешней среды—это экстерорецепторы. Другие получают сигналы от внутренних органов — это интерорецепторы, Среди чувствительных нервных окончаний по их функциональным проявлениям различают: механорецепторы, барорецепторы, терморецепторы и хеморецепторы.

По строению рецепторы подразделяют на свободные — это рецепторы в виде усиков, кустиков, клубочков. Они состоят только из ветвлений самого осевого цилиндра и не сопровождаются нейроглией. Другой вид рецепторов— это несвободные. Они представлены терминалами осевого цилиндра, сопровождаемыми нейроглиальными клетками. Среди несвободных нервных окончаний выделяют инкапсулированные, покрытые соединительнотканными капсулами. Это осязательные тельца Мейснера, пластинчатые тельца Фатер-Пачини и др. Второй разновидностью несвободных нервных окончаний являются неинкапсулированные нервные окончания. К ним относят осязательные мениски или осязательные диски Меркеля, залегающие в эпителии кожи и др.

Межнейрональные синапсы (synapses Interneuronales)— это места контактов двух нейронов. По локализации различают следующие виды синапсов: аксодендритические, аксосоматические и аксоаксональные (тормозные). В световом микроскопе синапсы имеют вид колечек, пуговок, булав (концевые синапсы) или тонких нитей, стелющихся по телу или отросткам другого нейрона. Это так называемые касательные синапсы. На дендритах выявляются синапсы, получившие название дендритических шипиков (шипиковый аппарат). Под электронным микроскопом в синапсах различают так называемый пресинаптический полюс с пресинаптической мембраной одного нейрона и постсинаптический полюс с постсинаптической мембраной (другого нейрона). Между этими двумя полюсами располагается синаптическая щель. На полюсах синапса часто сосредоточено большое количество митохондрий, а в области пресинаптического полюса и синаптической щели — синаптических пузырьков (в химических синапсах).

По способу передачи нервного импульса синапсы различают химические, электрические. В химических синапсах в синаптических пузырьках содержатся медиаторы — норадреналин в адренэргических синапсах (темные синапсы) и ацетилхолин в холинэргических синапсах (светлые синапсы). Нервный импульс в химических синапсах передается с помощью этих медиаторов. В электрических (беспузырьковых) синапсах не имеется синаптических пузырьков с медиаторами. Однако в них наблюдается тесный контакт прс- и постсинаптических мембран. В этом случае нервный импульс передается с помощью электрических потенциалов.

Читайте также:  Началось кровотечение через неделю после месячных

По производимому эффекту различают возбуждающие и тормозные синапсы. В тормозных синапсах медиатором может быть гаммааминомаслянная кислота. В химических синапсах всегда имеет место только одностороннее проведение нервного импульса.

Нейроны посредством синапсов объединяются в нейронные цепи. Цепь нейронов. обеспечивающая проведецие нервного импульса от рецептора чувствительного нейрона до двигательного нервного окончания, называется рефлекторной дугой. Существуют простые и сложные рефлекторные дуги.

Самая простая рефлекторная дуга образована всего двумя нейронами: первый — чувствительный и второй — двигательный. В большинстве случаев в рефлекторных дугах между этими нейронами включены еще ассоциативные, вставочные нейроны. Различают также соматические и вегетативные рефлекторные дуги. Соматические рефлекторные дуги регулируют работу скелетной мускулатуры, а вегетативные — обеспечивают непроизвольное сокращение мускулатуры внутренних органов.

Гистологический препарат. Пластинчатое тельце (тельце Фатер-Пачини).
Окраска гематоксилином и эозином. Малое увеличение. Найти:

  1. наружную капсулу (наружную луковицу) тельца,
  2. внутреннюю колбу (внутреннюю луковицу),
  3. терминали осевого цилиндра,
  4. ядра глиальных клеток.

Гистологический препарат. Осязательное тельце (тельце Мейснера).
Импрегнация серебром. Большое увеличение. Наити:

  1. капсулу тельца,
  2. терминальные ветвления осевого цилиндра,
  3. осязательные клетки.

Гистологический препарат. Двигательное нервное окончание в поперечнополосатой мышечной ткани. Моторная бляшка.
Импрегнация серебром. Большое увеличение. Найти:

  1. нервное волокно,
  2. его концевые веточки,
  3. ядра глиальных клеток,
  4. поперечнополосатое мышечное волокно,
  5. сарколемму,
  6. моторную бляшку.
  • Электронная микрофотография. Пластинчатое нервное тельце. «Атлас», 1970, стр.. 143, рис. 201.
  • Схема. Рефлекторная нервная дуга. «Атлас», 1970, стр. 148, рис. 208.
  • Схемы. Синаптические структуры разного типа. «Атлас», 1978, стр. 213, рис. 249.
  • Электронная микрофотография. Аксодендритические и аксоаксональныс контакты. «Атлас», 1978, стр. 215, рис. 252.

Методичка МГМСУ в формате PDF — скачать и читать со страницы 56 (Тема 5. Нервная ткань. Читать весь раздел.)
Методичка МГМСУ. Общая гистология.

Возбуждение, возникнув в одном участке мембраны возбудимой клетки, обладает способностью распространяться. Длинный отросток нейрона – аксон (нервное волокно) выполняет в организме специфическую функцию проведения возбуждения на большие расстояния.

Законы проведения возбуждения по нервным волокнам

• Закон анатомической и физиологической непрерывности – возбуждение может распространяться по нервному волокну только в случае его морфологической и функциональной целостности.

• Закон двустороннего проведения возбуждения – возбуждение, возникающее в одном участке нерва, распространяется в обе стороны от места своего возникновения. В организме возбуждение всегда распространяется по аксону от тела клетки (ортодромно).

• Закон изолированного проведения – возбуждение, распространяющееся по волокну, входящему в состав нерва, не передается на соседние нервные волокна.

Закономерности проведения местного и распространяющегося возбуждения

Электротонический потенциал (местное возбуждение)

• распространяется по нервным волокнам с затуханием (с декрементом ), т.е. амплитуда локального ответа быстро падает с увеличением расстояния от места его возникновения;

• вследствие затухания локальный ответ распространяется на небольшие расстояния (не более 2 см);

• местное возбуждение распространяется пассивно, без затрат энергии клетки;

• механизм распространения местного возбуждения аналогичен распространению электрического тока в проводниках; такой способ распространения возбуждения называют электротоническим .

Потенциал действия (распространяющееся возбуждение)

• распространяется по нервным волокнам без затухания, амплитуда потенциала действия одинакова на любом расстоянии от места его возникновения;

• расстояние, на которое распространяется потенциал действия, ограничено только длиной нервного волокна;

• распространение потенциала действия – активный процесс, в ходе которого изменяется состояние ионных каналов волокна, энергия АТФ требуется для восстановления трансмембранных ионных градиентов;

• механизм проведения потенциала действия более сложен, чем механизм распространения местного возбуждения.

Миелиновые и безмиелиновые нервные волокна

Миелиновые волокна. Часть нервных волокон в ходе эмбриогенеза подвергается миелинизации: леммоциты ( шванновские клетки ) сначала прикасаются к аксону, а затем окутывают его (рис. 1, А, Б). Мембрана леммоцита наматывается на аксон наподобие рулета, образуя многослойную спираль (миелиновую оболочку) (рис. 1, В, Г). Миелиновая оболочка не является непрерывной – по всей длине нервного волокна на равном расстоянии друг от друга в ней имеются небольшие перерывы (перехваты Ранвье). В области перехватов аксон лишен миелиновой оболочки.

Рис. 1. Формирование миелиновой оболочки вокруг аксона на разных стадиях его развития (А – Г); соотношение леммоцита и безмиелиновых волокон (Д) (по Судакову, 2000)

1 – леммоцит, 2 – миелиновое волокно, 3 – миелиновая оболочка, 4 – безмиелиновое волокно

Безмиелиновые волокна. Миелинизация других волокон заканчи­вается на ранних стадиях эмбрионального развития. В леммоцит по­гружается один или несколько аксонов; он полностью или частично окружает их, но не образует многослойной миелиновой оболочки (рис. 1, Д).

Механизм проведения возбуждения по безмиелиновым нервным волокнам

В состоянии покоя вся внутренняя поверхность мембраны нервного волокна несет отрицательный заряд, а наружная сторона мембраны – положительный. Электрический ток между внутренней и наружной стороной мембраны не протекает, так как липидная мембрана имеет высокое электрическое сопротивление.

Во время развития потенциала действия в возбужденном участке мембраны происходит реверсия заряда (рис. 2, А). На границе возбужденного и невозбужденного участка начинает протекать электрический ток (рис. 2, Б). Электрический ток раздражает ближайший участок мембраны и приводит его в состояние возбуждения (рис. 2, В), в то время как ранее возбужденные участки возвращаются в состояние покоя (рис. 2, Г). Таким образом, волна возбуждения охватывает все новые участки мембраны нервного волокна.

Читайте также:  Бакулевская больница на рублевском шоссе

Рис. 2. Механизм распространения возбуждения по безмиелиновому нервному волокну. Объяснения – в тексте

Механизм проведения возбуждения по миелиновым нервным волокнам

При развитии ПД в одном из перехватов Ранвье происходит реверсия заряда мембраны (рис. 3, А). Между электроотрицательными и электроположительными участками мембраны возникает электрический ток, который раздражает соседние участки мембраны (рис. 3, Б). Однако в состояние возбуждения может перейти только участок мембраны в области следующего перехвата Ранвье (рис. 3, В). Таким образом, возбуждение распространяется по мембране скачкообразно (сальтаторно) от одного перехвата Ранвье к другому.

Рис. 3. Механизм распространения возбуждения по миелиновому нервному волокну. Объяснения – в тексте

Классификация нервных волокон

Нервные волокна различаются по диаметру и степени миелинизации. Чем больше диаметр нервного волокна и степень его миелинизации, тем выше скорость проведения возбуждения. Волокна с разной скоростью проведения выполняют различные физиологические функции. Нервные волокна подразделяются на 6 типов, характеристики которых приведены в табл. 4.1.

Таблица 4.1. Типы нервных волокон, их свойства и функциональное назначение

Тип

Диаметр (мкм)

Миелинизация

Скорость про-ведения (м/с)

Функциональное назначение

Двигательные волокна соматической НС; чувствительные волокна проприорецепторов

Чувствительные волокна кожных рецепторов

Чувствительные волокна проприорецепторов

Чувствительные волокна терморецепторов, ноцицепторов

Преганглионарные волокна симпатической НС

Постганглионарные волокна симпатической НС; чувствительные волокна терморецепторов, ноцицепторов, некоторых механорецепторов

Нервные волокна всех групп обладают общими свойствами:

• нервные волокна практически неутомляемы;
• нервные волокна обладают высокой лабильностью, т. е. могут воспроизводить потенциал действия с очень высокой частотой.

Рис. 7. Миелиновые нервные волокна из седалищного нерва лягушки, обработанного тетраоксидом осмия: 1 — слой миелина; 2 — соединительная ткань; 3 — нейролеммоцит; 4 — насечки миелина; 5 — перехват узла

Рис. 8. Межмышечное нервное сплетение кишечника кошки: 1 — безмиелиновые нервные волокна; 2 — ядра нейролеммоцитов

Отростки нервных клеток обычно одеты глиальными оболочками и вместе с ними называются нервными волокнами. Так как в различных отделах нервной системы оболочки нервных волокон значительно отличаются друг от друга по своему строению, то в соответствии с особенностями их строения все нервные волокна делятся на две основные группы — миелиноеые (рис.7) и безмиелиновые волокна (рис.8). Те и другие состоят из отростка нервной клетки (аксона или дендрита), который лежите в центре волокна и поэтому называется осевым цилиндром, и оболочки, образованной клетками олигодендроглии, которые здесь называются леммоцитами (шванновскими клетками).

Безмиелиновые нервные волокна

Находятся они преимущественно в составе вегетативной нервной системы. Клетки олигодендроглии оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи цитоплазмы, в которых на определенном расстоянии друг от друга лежат овальные ядра. В безмиелиновых нервных волокнах внутренних органов часто в одной такой клетке располагается не один, а несколько (10-20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж леммоцитов последние одевают их как муфта.

Оболочка леммоцитов при этом прогибается, плотно охватывает осевые цилиндры и, смыкаясь над ними, образует глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки леммоцита образуют двойную мембрану — мезаксон, на которой как бы подвешен осевой цилиндр (рис.9).

Так как оболочка леммоцитов очень тонка, то ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, одевающий осевые цилиндры. С поверхности каждое нервное волокно покрыто базальной мембраной.

Рис. 9. Схема продольного(А) и поперечного (Б) сечения безмиелиновых нервных волокон: 1 — ядро леммоцита; 2 — осевой цилиндр; 3 — митохондрии; 4 — граница леммоцитов; 5 — мезаксон.

Миелиновые нервные волокна

Миелиновые нервные волокна значительно толще безмиелиновых. Диаметр поперечного сечения их колеблется от 1 до 20 мк. Они также состоят из осевого цилиндра, одетого оболочкой из леммоцитов, но диаметр осевых цилиндров этого типа волокон значительно больше, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, — миелиновый слой (рис.10), и наружный, тонкий, состоящий из цитоплазмы леммоцитов и их ядер.

Миелиновый слой содержит в своем составе липоиды, а поэтому при обработке волокна осмиевой кислотой он интенсивно закрашивается в темно-коричневый цвет. Все волокно в этом случае представляется однородным цилиндром, в котором на определенном расстоянии друг от друга располагаются косо ориентированные светлые линии — насечки миелина (incision myelini), ил и насечки Шмидта-Лантермана. Через некоторые интервалы (от нескольких сотен микронов до нескольких миллиметров) волокно резко истончается, образуя сужения — узловые перехваты, или перехваты Ранвье. Перехваты соответствуют границе смежных леммоцитов. Отрезок волокна, заключенный между смежными перехватами, называется межузловым сегментом, а его оболочка представлена одной глиальной клеткой.

Читайте также:  Мутит желудок что делать

В процессе развития миелинового волокна осевой цилиндр, погружаясь в леммоцит, прогибает его оболочку, образуя глубокую складку.

Рис. 10. Схема нейрона. 1 — тело нервной клетки; 2 — осевой цилиндр; 3 — глиальная оболочка; 4 — ядро леммоцита; 5 — миелиновый слой; 6 — насечка; 7 — перехват Ранвье; 8 — нервное волокно, лишенное миелинового слоя: 9 — двигательное окончание; 10 — миелиновые нервные волокна, обработанные осмиевой кислотой.

По мере погружения осевого цилиндра оболочка леммоцита в области щели сближается и ее два листка соединяются друг с другом своей внешней поверхностью, образуя двойную мембрану — мезаксон (рис.11).

При дальнейшем развитии миелинового волокна мезаксон удлиняется и концентрически наслаивается на осевой цилиндр, вытесняя цитоплазму леммоцита и образуя вокруг осевого цилиндра плотную слоистую зону — миелиновый слой (рис.12). Так как оболочка леммоцита состоит из липидов и белков, а мезаксон представляет собой ее двойной листок, то естественно, что миелиновая оболочка, образованная его завитками, интенсивно окрашивается осмиевой кислотой. В соответствии с этим под электронным микроскопом каждый завиток мезаксона виден как слоистая структура, построенная из белков и липидов, расположение которых типично для мембранных структур клеток. Светлый слой имеет ширину около 80-120 ? и соответствует липоидным слоям двух листков мезаксона. Посредине и по поверхности его видны тонкие темные линии, образованные молекулами белка.

Рис. 11. Схема развития миелинового волокна. 1 — контакт аксолеммы и оболочки леммоцита; 2 — щель; 3 — аксолемма и оболочка леммоцига; 4 — цитоплазма леммоцита; 5 — мезаксон

Шванновской оболочкой называется периферическая зона волокна, содержащая оттесненную сюда цитоплазму леммоцитов (шванновских клеток) и их ядра. Эта зона при обработке волокна осмиевой кислотой остается светлой. В области насечек между завитками мезаксона имеются значительные прослойки цитоплазмы, благодаря чему клеточные мембраны располагаются на некотором расстоянии друг от друга. Больше того, как видно на рис.188, листки мезаксона в этой области также лежат неплотно. В связи с этим при осмировании волокна эти участки не окрашиваются.

Рис. 12. Схема субмикроскопического строения миелинового нервного волокна: 1 — аксон; 2 — мезаксон; 3 — насечка миелина; 4 — узел нервного волокна; 5 — цитоплазма нейролеммоцита; 6 — ядро нейролеммоцита; 7 — нейролемма; 8 — эндоневрий

На продольном сечении вблизи перехвата видна область, в которой завитки мезаксона последовательно контактируют с осевым цилиндром. Место прикрепления самых глубоких завитков его наиболее удалено от перехвата, а все последующие завитки закономерно расположены ближе к нем у (см. рис.12). Это легко понять, если представить себе, что закручивание мезаксона идет в процессе роста осевого цилиндра и одевающих его леммоцитов. Естественно, что первые завитки мезаксона оказываются короче, чем последние. Края двух смежных леммоцитов в области перехвата образуют пальцеобразные отростки, диаметр которых равен 500 ?. Длина отростков различна. Переплетаясь между собой, они образуют вокруг осевого цилиндра своеобразный воротничок и попадают на срезах то в поперечном, то в продольном направлении. В толстых волокнах, у которых область перехвата относительно коротка, толщина воротничка из отростков шванновских клеток больше, чем в тонких волокнах. Очевидно, аксон тонких волокон в перехвате более доступен для внешних воздействий. Снаружи миелиновое нервное волокно покрыто базальной мембраной, связанной с плотными тяжами коллагеновых фибрилл, ориентированных продольно и не прерывающихся в перехвате — невралеммой.

Функциональное значение оболочек миелинового нервного волокна в проведении нервного импульса в настоящее время недостаточно изучено.

Осевой цилиндр нервных волокон состоит из нейроплазмы — бесструктурной цитоплазмы нервной клетки, содержащей продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме осевого цилиндра лежат митохондрии, которых больше в непосредственной близости к перехватам и особенно много в концевых аппаратах волокна.

С поверхности осевой цилиндр покрыт мембраной — аксолеммой, обеспечивающей проведение нервного импульса. Сущность этого процесса сводится к быстрому перемещению локальной деполяризации мембраны осевого цилиндра по длине волокна. Последнее определяется проникновением в осевой цилиндр ионов натрия (Nа + ), что меняет знак заряда внутренней поверхности мембраны на положительный. Это, в свою очередь, повышает проходимость ионов натрия в смежном участке и выход ионов калия (К + ) на внешнюю поверхность мембраны в деполяризованном участке, в котором восстанавливается при этом исходный уровень разности потенциалов. Скорость движения волны деполяризации поверхностной мембраны осевого цилиндра определяет быстроту передачи нервного импульса. Известно, что волокна с толстым осевым цилиндром проводят раздражение быстрее тонких волокон. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/сек, тогда как толстые миелиновые — 5-120 м/сек.

Ссылка на основную публикацию
Фунгицидно акарицидная мазь ям для человека
Мазь ЯМ БК – лекарственное средство, которое назначается при различных кожных заболеваниях у животных. К сожалению, многие не читают инструкцию...
Фотолечение желтухи новорожденных
Физиологическая желтуха Более чем у половины новорожденных на второй-третий день жизни кожа и склеры приобретают желтый оттенок. Это физиологическая желтуха,...
Фотоомоложение жулебино
Красота, свежесть и молодость кожи тела и лица – мечта каждой женщины. По этой причине ежедневно ищутся и создаются новые...
Фундук с медом польза для мужчин
Чем полезна смесь орехов и меда для мужчин? Не секрет, что в среднем возрасте сильная половина человечества сталкивается с расстройством...
Adblock detector