Эндоплазматическая сеть ретикулум

Эндоплазматическая сеть ретикулум

Строение цитоплазмы в настоящее время изучают на молекулярном уровне. Благодаря электронному микроскопу было подтверждено ранее высказанное предположение о существовании сетчатой структуры цитоплазмы в виде особого цитоскелета. Это универсальное для всех животных и растительных клеток субмикроскопическое строение цитоплазмы получило название эндоплазматической сети, или эндоплазматического ретикулума.

Итак, эндоплазматическая сеть представляет систему внутриклеточных канальцев, вакуолей, цистерн, ограниченных цитоплазматическими мембранами, соединенных анастомозами и пронизывающих цитоплазму клетки. Пространства эндоплазматической сети заполнены материалом разной прозрачности, по электронной плотности отличающимся от окружающей цитоплазмы. Различают два типа эндоплазматической сети: гранулярную и гладкую (агранулярную).

Гранулярная эндоплазматическая сеть, раньше называемая эргастоплазмой, является одним из компонентов сложной внутриклеточной системы, участвующей в синтезе белка.

Гладкая эндоплазматическая сеть участвует в синтезе, и передвижении липидов и гликогена в клетке.

Функциональное значение эндоплазматической сети многообразно. Ее мембраны пронизывают и связывают в единое целое множество клеток. В отдельных пунктах канальцы эндоплазматической сети связаны с наружной цитоплазматической мембраной.

Аналогичная связь канальцев эндоплазматической сети с ядерной мембраной была обнаружена на животных и растительных клетках. Также были получены данные об участии канальцев эндоплазматической сети в регуляции клеточного обмена, в передаче раздражений от клетки к клетке и т.п.

Комплекс Гольджи

В 1898 г. Итольянский цитолог Гольджи, используя метод серебрения, впервые обнаружил в основной цитоплазме клетки сетчатую структуру, названную им «внутриклеточным сетчатым аппаратом», впоследствии получившим название «аппарата Гольджи».

С помощью электронного микроскопа было установлено, что комплекс Гольджи состоит из трех компонентов:

1) системы уплощенных цистерн, ограниченных гладких мембран, расположенных группами и плотно прилегающих друг к другу;

2) мелких, довольно плотных пузырьков, обычно располагающихся на концах цистерн;

3) крупных вакуолей (0,2-0,3 микрона), ограниченных такими же мембранами как и цистерны.

Одна из характерных особенностей аппарата Гольджи – отсутствие рибосом, которые имеются на мембранах гранулярной эндоплазматической сети. Функции аппарата Гольджи – это участие в построении клеточной стенки и в синтезе полисахаридов.

Рибосомы – это гранулы, расположенные в гиаплазме или прикрепленные к поверхности мембран эндоплазматического ретикулума. Они обнаружены также в митохондриях и пластидах. Рибосомы состоят из белка и рибонуклеиновой кислоты (РНК) и не имеют мембранной структуры. Функция Рибосом – это синтез белка, самовоспроизводство живой материи.

Этот процесс происходит в рибосомах, расположенных группой и связанных между собой нитевидной молекулой и РНК такие группы называются Полисомами. Считают, что рибосомы формируются в ядре. Поскольку в процессе жизнедеятельности происходит постоянное обновление белков цитоплазмы и ядра, то без рибосом клетка долго существовать не может.

Сферосомы – это округлые тельца липидно-протеиновой природы. Они возникают из концевых вздутий тяжей эндоплазматической сети и богаты ферментами, необходимыми для синтеза жиров. Сферосомы лишены типичной ограничивающей мембраны.

Производные протопласта – клеточная стенка, вакуоль, эргостические вещества, физиологически активные вещества.

Физиологически активные вещества:

Ферменты (энзимы) Были открыты в 1814 г. Русским академиком Кирхгофом. Ферменты – это органические катализаторы белковой природы, они находятся во всех органеллах и компонентах клетки. В клетках растений осуществляются многочисленные обменные реакции.

Достаточно вспомнить фотосинтез, синтез и диссимиляцию таких веществ, как белки, жиры, углеводы. Все они проходят при обязательном участии ферментов. Ферменты не только направляют ход реакции, но и убыстряют ее в десятки раз.

Фитогормоны – это вещества высокой физиологической активности. Наиболее полно изучены гормоны роста. Под их влиянием убыстряется ростовые процессы: деление и рост клеток, формирование органов.

Витамины – были открыты в 1880 г. Луниным, а термин предложен позднее польским ученым Функом (1912).

Различают витамины, растворимые в воде, например В, С, РР, Н и др; они находятся в клеточном соке. Витамины растворимые в жирах: А, Д, Е, содержатся в цитоплазме. Обычно витамины локализованы в определенных органах растений.

Так витамины группы В содержаться в зародыше, в кожуре семян или молодых проростках, например ржи, пшеницы. Витамин С больше всего в плодах шиповника, лимона, черной смородины. Витамин Е – в растительных маслах, проростках пшеницы и кукурузы, в плодах цитрусовых и томатах. Витамин К – в листьях крапивы, корнеплодах моркови. Всего известно около 40 витаминов. В теле растения витамины принимают участие в обменных реакциях и находятся в химической связи с ферментами клеток.

Фитонциды и антибиотики. Это группы веществ, которые вырабатываются как клетками низших растений (антибиотики), так и высших (фитонциды). Эти вещества служат для защиты растений.

Эргостические вещества – это продукты запаса или обмена.

Углеводы – Молекула углевода содержит углерод, водород и кислород. Крахмал – соединение, часто встречающееся в качестве запасного продукта. Он образуется в процессе фотосинтеза в хлоропластах (фотосинтетический, или первичный крахмал). Затем происходит его ферментативное превращение — осахаривание, и в виде сахара (глюкозы) он транспортируется из листа на построение органов растений или в запас.

Гликоген6Н10О5)n накапливается в качестве запасного продукта преимущественно у незеленых растений (бактерий, грибы), а также у некоторых сине-зеленых водорослей. Гликоген широко распространен как запасной продукт у животных.

Инулин6Н10О5)n накапливается у некоторых видов сем. Астровые (сложноцветные): Цикория, земляной груши. Он содержится в клеточном соке в состоянии коллоидного раствора. Количество инулина в подземных органах – корнеплодах цикория – достигает – 12%. При действии спиртом инулин выпадает в виде сферокристаллов.

Читайте также:  Истощение яичников причины симптомы лечение

Жиры – жиры (жирные масла), широко распространенный запасной продукт. Встречается у водорослей, в спорах плаунов, папоротников и хвощей, а также в семенах многих голосеменных и покрытосеменных. Жирные масла отличаются высокой калорийностью.

Откладываются жиры в особых ультраструктурах – сферосомах, дислоцированных в цитоплазме. Чаще всего жиры накапливаются в семенах, иногда в плодах (маслина). Жиры хорошо растворяются в эфире, бензоле, толуоле, ксилоле, бензине. В спирте растворяются плохо, в воде нерастворимы.

Белки – Растения, как и животные, содержат много разнообразных белков. Одни группы белков составляют основную часть цитоплазмы – конституционные белки. Другие белки — ферменты – направляют ход всех жизненных процессов, т.е. химических превращений. Особую группу составляют запасные белки.

Молекула белка состоит из аминокислот. Из почти 150 известных в природе аминокислот лишь 22 входят в состав белков. Их чередование в молекуле белка определяет его бесконечное разнообразие. Каждый вид растения имеет свой набор белков специфического строения.

Запасные белки, как и углеводы, являются вторичными продуктами ассимиляции. (Участие в процессах обмена веществ называется ассимиляция и диссимиляция). Это обычные простые белки — протеины, построенные из остатков аминокислот.

Наиболее распространены алейроновые (протеиновые) зерна, которые образуются вследствие высыхания вакуолей, выпадения в осадок белка и его кристаллизации.

Это, однако, обратимый процесс, ибо при прорастании семени, когда оно обогащается водой и появляется клеточный сок, алейроновые зерна вновь превращаются в вакуоли.

Алейроновые зерна каждого вида растения сохраняют определенную структуру и, подобно зернам крахмала, служат надежным видовым признаком. Физиологически активные вещества – ферменты (энзимы), фитогармоны, фитонциды (у высших) антибиотики (у низших). Витамины (создаются растениями). Поливитамины: А, В, В1, 12-6, С, Д, РР, Е, К.

гистология клетка растение гриб

Лекция 2. Тема: Гистология и органография растений

Рассмотрены следующие вопросы:

1) Понятие о тканях

3) Органы растений и их строение и функции

Меристематические ткани

Первичная и вторичная меристема. Первичная меристема возникает в самом начале развития организма. Оплодотворенная яйцеклетка делится и образует зародыш, который состоит из первичной меристемы, вторичная возникает, как правило, позднее из первичной или из уже дифференцированных тканей. Из первичной меристемы образуются первичные ткани, из вторичной – вторичные.

По месту расположения различают четыре вида меристем:

Верхушечная (апикальная) меристема. Находится на верхушках главных и боковых осей стебля и корня. Она определяет главным образом рост органов в длину.

По происхождению она первичная. На верхушке стебля расположена небольшая группа паренхимных клеток (реже одна клетка), которые довольно быстро делятся.

Это инициальные клетки. Ниже лежат производные инциальных клеток, деление которых происходит реже. А еще ниже в меристеме обосабливаются три группы клеток, из которых дифференцируются ткани первичного тела: протодерма – поверхностный слой клеток, дающий начало покровной ткани; прокамбий – удлиненные клетки меристемы с заостренными концами, расположенные вдоль вертикальной оси группами, из них образуются проводящие и механические ткани и вторичная меристема (камбий).

Верхушечная меристема корня имеет немного другое строение. На верхушке располагаются инициальные клетки, дающие начало трем слоям: дерматогену, дифференцирующемуся в эпиблему; периблеме, дающей начало тканям первичной коры; плероме, дифференцирующейся в ткани центрального цилиндра.

Боковая (латеральная) меристема – камбий. Располагается цилиндром вдоль осевых органов параллельно их поверхности. Обычно она вторичная. Обуславливает разрастание органов в толщину. Чаще ее называют камбием.

Вставочная (интеркалярная) меристема.

Закладывается у основания междоузлий побегов, листьев, цветоножек и других органов. Это первичная или вторичная меристема, она определяет рост органов в длину.

Раневая (травматическая) меристема. Возникает на любом участке тела растения, где нанесена травма. По происхождению она вторичная.

Покровные ткани

Главная функция – защита растений от высыхания и других неблагоприятных воздействий внешней среды. В зависимости от происхождения различают три группы покровных тканей: эпидерму, пробку, корку.

Эпидерма – Первичная покровная ткань, которая образуется из протодермы, покрывает листья и молодые стебли. Чаще всего эпидерма состоит из одного ряда живых, плотно сомкнутых клеток. Защитная функция эпидермы усиливается выростами ее клеток (трихомами) – волосками разнообразного строения.

В эпидерме имеются особые образования для газообмена и транспирации – устьичные аппараты, состоящие из двух замыкающих клеток и межклетника между ними, который называется устьичной щелью.

Устьичные аппараты у наземных растений расположены преимущественно на нижней стороне листовой пластинки, а у плавающих листьев водяных растений — только на верхней стороне.

Пробка – (перидерма). Клетки эпидермы вследствие роста стебля в толщину деформируются и отмирают. К этому времени появляется вторичная покровная ткань – пробка. Ее образование связано с деятельностью вторичной меристемы – пробкового камбия (феллогена). В общем, перидерма – это комплекс, состоящий из трех тканей: феллогена – пробкового камбия, феллемы – собственно пробки и феллодермы – пробковой паренхимы.

Пробка состоит из правильных радиальных рядов плотно расположенных клеток, стенки которых опробковели. В результате опробковения стенок содержимое клеток феллемы (отмирает). Остается слой мертвых клеток без межклетников, который не пропускает ни воду, ни газы. Этот слой надежно защищает органы растения от излишнего испарения и неблагоприятных внешних воздействий.

Читайте также:  Микромеркуриализм

Для транспирации и газообмена в пробке имеются особые образования – чечевички, заполненные округлыми клетками, между которыми имеются большие межклетники. Сверху они имеют вид небольших бугорков с трещиной посередине.

Корка (ритидом). Корка образуется на смену пробке, поэтому ее иногда называют третичной покровной тканью. В типичных случаях корка встречается у деревьев.

Изолированные от центрального цилиндра отмершие слои тканей уплотняются, деформируются и образуют корку. Таким образом, корка представляет целый комплекс разнородных, сильно деформированных мертвых тканей.

Строение эндоплазматической сети

Эндоплазматическая сеть (ЭПС, эндоплазматический ретикулум) – сложная ультрамикроскопическая, очень разветвлённая, взаимосвязанная система мембран, которая более или менее равномерно пронизывает массу цитоплазмы всех эукариотических клеток.

ЭПС – мембранная органелла, состоящая из плоских мембранных мешочков – цистерн, каналов и трубочек. Благодаря такому строению эндоплазматическая сеть значительно увеличивает площадь внутренней поверхности клетки и делит клетку на секции. Внутри она заполнена матриксом (умеренно плотный рыхлый материал (продукт синтеза)). Содержание различных химических веществ в секциях неодинаково, потому в клетке как одновременно, так и в определённой последовательности могут происходить различные химические реакции в незначительном объёме клетки. Эндоплазматическая сеть открывается в перинуклеарное пространство (полость между двумя мембранами кариолемы).

Мембрана эндоплазматической сети состоит из белков и липидов (в основном фосфолипидов), а так же ферментов: аденозинтрифосфатазы и ферментов синтеза мембранных липидов.

Готовые работы на аналогичную тему

  • Курсовая работа Эндоплазматическая сеть 480 руб.
  • Реферат Эндоплазматическая сеть 270 руб.
  • Контрольная работа Эндоплазматическая сеть 190 руб.

Различают два вида эндоплазматической сети:

  • Гладкую (агранулярную, аЭС), представленную трубочками, которые анастамозируют между собой и не имеют на поверхности рибосом;
  • Шероховатую (гранулярную, грЭС), состоящую так же из соединённых между собой цистерн, но они покрыты рибосомами.

Иногда выделяют ещё переходящую, или транзиторную (тЭС) эндоплазматическую сеть, которая находится в участке перехода одной разновидности ЭС в другую.

Гранулярная ЭС свойственна всем клеткам (кроме сперматозоидов), но степень её развития разная и зависит от специализации клетки.

Сильно развита грЭС эпителиальных железистых клеток (поджелудочной железы, вырабатывающих пищеварительные ферменты, печени – синтезирующих альбумины сыворотки крови), фибробластов (клеток соединительной ткани, продуцирующих белок коллаген), плазматических клеток (продуцирование иммуноглобулинов).

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Агранулярная ЭС преобладает в клетках надпочечников (синтез стероидных гормонов), в клетках мышц (обмен кальция), в клетках фундальных желез желудка (выделение ионов хлора).

Другим видом мембран ЭПС являются разветвлённые мембранные трубочки, содержащие внутри большое количество специфических ферментов, и везикулы – маленькие, окружённые мембраной пузырьки, в основном находящиеся рядом с трубочками и цистернами. Они обеспечивают перенесение тех веществ, которые синтезируются.

Функции ЭПС

Эндоплазматическая сеть – это аппарат синтеза и, частично, транспорта веществ цитоплазмы, благодаря которому клетка выполняет сложные функции.

Функции обоих типов ЭПС связаны с синтезом и транспортом веществ. Эндоплазматическая сеть является универсальной транспортной системой.

Гладкая и шероховатая эндоплазматические сети своими мембранами и содержимым (матриксом) выполняют общие функции:

  • разделительную (структурирующую), благодаря чему цитоплазма упорядоченно распределяется и не смешивается, а так же предотвращает попадание в органеллу случайных веществ;
  • трансмембранное транспорт, благодаря которому осуществляется перенесение сквозь стенку мембраны необходимых веществ;
  • синтез липидов мембраны с участием ферментов, содержащихся в самой мембране и обеспечивающих репродукцию эндоплазматической сети;
  • благодаря разнице потенциалов, возникающая между двумя поверхностями мембран ЭС возможно обеспечение проведения импульсов возбуждения.

Кроме того, каждой из разновидностей сети свойственны свои специфические функции.

Функции гладкой (агранулярной) эндоплазматической сети

Агранулярная эндоплазматическая сеть, кроме названных функций, общих для обоих видов ЭС, выполняет ещё и свойственные только для неё функции:

  • депо кальция. Во многих клетках (в скелетных мышцах, в сердце, яйцеклетках, нейронах) существуют механизмы, способные изменять концентрацию ионов кальция. Поперечнополосатая мышечная ткань содержит специализированную эндоплазматическую сеть, называемую саркоплазматическим ретикулумом. Это резервуар кальций-ионов, а мембраны этой сети содержат мощные кальциевые помпы, способные выбрасывать в цитоплазму большое количество кальция или транспортировать его в полости каналов сети за сотые доли секунды;
  • синтез липидов, веществ типа холестерина и стероидных гормонов. Стероидные гормоны синтезируются в основном в эндокринных клетках половых желез и надпочечников, в клетках почек и печени. Клетки кишечника синтезируют липиды, которые выводятся в лимфу, а потом в кровь;

детоксикационная функция – обезвреживание єкзогенных и эндогенных токсинов;

В почечных клетках (гепатоцитах) содержатся ферменты оксидазы, способные разрушать фенобарбитал.

ферменты органеллы берут участие в синтезе гликогена (в клетках печени).

Функции шероховатой (гранулярной) эндоплазматической сети

Для гранулярной эндоплазматической сети, кроме перечисленных общих функций, свойственны ещё и специальные:

  • синтез белков на грЭС имеет некоторые особенности. Начинается он на свободных полисомах, которые в дальнейшем связываются с мебранами ЭС.
  • Гранулярная эндоплазматическая сеть синтезирует: все белки клеточной мембраны (кроме некоторых гидрофобных белков, белков внутренних мембран митохондрий и хлоропластов), специфические белки внутренней фазы мембранных органелл, а так же секреторные белки, которые транспортируются по клетке и поступают во внеклеточное пространство.
  • пострансляционная модификация белков: гидроксилирование, сульфатирование, фосфориллирование. Важным процессом является гликозилирование, которое происходит под действием связанного с мембраной фермента гликозилтранферазы. Гликозилирование происходит перед секрецией или транспортом веществ к некоторым участкам клетки ( комплексу Гольджи, лизосомам или плазмолемме).
  • транспорт веществ по внутримембранной части сети. Синтезированные белки по промежуткам ЭС перемещаются к комплексу Гольджи, который выводит вещества из клетки.
  • благодаря участию гранулярной эндоплазматической сети образуется комплекс Гольджи.

Функции зернистой эндоплазматической сети связаны с транспортом белков, которые синтезируются в рибосомах и расположены на её поверхности. Синтезированные белки поступают внутрь ЭПС, скручиваются и приобретают третичную структуру.

Белок, который транспортируется к цистернам, значительно изменяется на своём пути. Он может, например, фосфорилироваться или превращаться в гликопротеид. Обычный путь для белка – это путь через зернистую ЭПС в аппарат Гольджи, откуда он или выходит наружу клетки, или поступает к другим органеллам той же клетки, например, к лизосомам), или откладывается в виде запасных гранул.

В клетках печени как зернистая, так и незернистая эндоплазматическая сетка берут участие в процессах детоксикации ядовитых веществ, которые потом выводятся из клетки.

Как и внешняя плазматическая мембрана, эндоплазматическая сетка имеет избирательную проницаемость, вследствие чего концентрация веществ внутри и снаружи каналов сетки неодинакова. Это имеет значение для функции клетки.

В эндоплазматической сетке мышечных клеток больше ионов кальция, чем в её цитоплазме. Выходя из каналов эндоплазматической сетки, ионы кальция запускают процесс сокращения мышечных волокон.

Образование эндоплазматической сети

Липидные компоненты мембран эндоплазматической сети синтезируются ферментами самой сети, белковый – поступает из рибосом, расположенных на её мембранах. В гладкой (агранулярной) эндоплазматической сети нет собственных факторов синтеза белка, потому считается, что эта органелла образуется в результате потери рибосом гранулярной эндоплазматической сетью.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Описаны строение и функции эндоплазматической сети мышечного волокна. В мышечном волокне она представлена в виде шероховатой эндоплазматической сети и гладкой эндоплазматической сети (саркоплазматического ретикулума).

Эндоплазматическая сеть мышечного волокна

Эндоплазматическая сеть мышечного волокна – мембранная органелла, представляющая собой разветвленную сеть трубочек и полостей. В мышечном волокне она представлена в виде шероховатой эндоплазматической сети и гладкой эндоплазматической сети (саркоплазматического ретикулума).

Шероховатая эндоплазматическая сеть

Шероховатая эндоплазматическая сеть – мембранная органелла, окружающая миоядра. На ее поверхности располагаются рибосомы. На рибосомах синтезируются разнообразные белки, необходимые для нормального функционирования мышечного волокна: миозин, актин, тропонин, тропомиозин, десмин, виментин и многие другие. Эти белки представляют собой полипептидные цепочки (цепочки аминокислот). В полостях шероховатой эндоплазматической сети эти цепочки аминокислот обрезаются и сворачиваются. Из шероховатой эндоплазматической сети белки перемещаются в виде мембранных пузырьков в цис-сеть комплекса Гольджи. В комплексе Гольджи происходит заключительный этап формирования белковой молекулы, который называется процессингом или посттрансляционной модификацией. В результате возникает объемная трёхмерная структура белка.

Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«

Саркоплазматический ретикулум

Саркоплазматический ретикулум (гладкая эндоплазматическая сеть) – мембранная органелла, представляющая собой систему трубочек и мешочков (цистерн), окружающих миофибриллы. Известно, что миофибриллы не имеют оболочки, поэтому функцию оболочки выполняет саркоплазматический ретикулум, который окружает каждую миофибриллу наподобие «муфточки» или «кружевного рукава» (рис.1).

Рис.1. Саркоплазматический ретикулум (темно-голубой цвет) и трубочки Т-системы (светло-голубой цвет) мышечного волокна.

Е.Вератти в начале ХХ века обнаружил тончайшую сеть в мышечном волокне. Однако только к середине века при помощи электронного микроскопа удалось установить структуру и функции саркоплазматического ретикулума.

Структура

Саркоплазматический ретикулум представляет собой единую систему компонентов различной формы — от трубочек до уплощенных цистерн. Благодаря ответвлениям продольные каналы, окружающие каждую миофибриллу соединяются друг с другом, а также с другими каналами, окружающими другие миофибриллы.

Функция

Основная функция саркоплазматического ретикулума – депонирование и выделение ионов кальция (Са 2+ ). В состоянии покоя в саркоплазматическом ретикулуме депонируются ионы кальция. В саркоплазме мышечного волокна концентрация этих ионов очень низкая. В начале сокращения мышечного волокна продольные каналы саркоплазматического ретикулума становятся шире и короче и из него в саркоплазму выделяются ионы кальция, необходимых для процесса сокращения мышечного волокна. После окончания процесса сокращения мышечного волокна ионы кальция закачиваются в саркоплазматический ретикулум посредством кальциевого насоса.

Т-система

От поверхности мышечного волокна к расширенным участкам саркоплазматического ретикулума направляются выпячивания сарколеммы – поперечные трубочки, называемые Т-системой (рис.2). Главная функция трубочек – проведение возбуждающих импульсов с поверхности мышечного волокна в его центральную зону, что приводит к выделению ионов кальция из саркоплазматического ретикулума.

Рис.2. Трубочки Т-системы (T-tubule) начинаются на поверхности мышечного волокна

Повреждение мышечных волокон

При повреждении мышечных волокон очень часто повреждается саркоплазматический ретикулум. Это приводит к значительному выбросу ионов кальция в саркоплазму мышечного волокна и активации ферментов – протеаз, разрушающих белки.

Ссылка на основную публикацию
Энап мнн название
ATX классификация: C09AA02 Эналаприл Мнн или группировочное наименование: Ацетилцистеин Фармакологическая группа: C09A - ИНГИБИТОРЫ АНГИОТЕНЗИН-ПРЕВРАЩАЮЩЕГО ФЕРМЕНТА (АПФ) ПРОСТЫЕ Производитель: KRKA...
Элеукок лекарство
По предзаказу 20 шт. В наличии 0 шт. По предзаказу 20 шт. В наличии 0 шт. По предзаказу 20 шт....
Элоком инструкция по применению цена отзывы аналоги
Действующее вещество Состав и форма выпуска препарата Крем для наружного применения 0.1% белого или почти белого цвета, однородный, мягкой консистенции,...
Эндогенная депрессия как лечить
В зависимости от причин и выраженности симптомов, различают несколько видов депрессии. Эндогенная депрессия – это психическое расстройство, возникающее у внешне...
Adblock detector