Этапы развития биотехнологии как науки

Этапы развития биотехнологии как науки

Видимо правомерно отнести, возникновение современной биотехнологии, начавшей свое формирование на базе существующих отраслей микробиологической промышленности, к началу 50-х годов нынешнего века, а весь предшествующий данному периоду этап, назвать предысторией формирования биотехнологии, восходящей к древним цивилизациям. В этой связи третий съезд Европейской ассоциации биотехнологов в Мюнхене (1984 г.) доброжелательно воспринял предложение голландца Е. Хаувинка о выделении 5 периодов (эр) в развитии биотехнологии:

Допастеровский: до 1865 г. (до открытия Пастером микромира в 1865 г.) – хлебопечение, молочнокислое брожение, получение уксуса, сыра, открытие спирта.

Послепастеровский: 1866 – 1940 гг. – связан с получением бутанола, ацетона, анатоксинов, вакцин, сывороток и других продуктов с помощью биосинтетической способности микроорганизмов.

Антибиотиков: 1941 – 1960 гг. – открытие антибиотиков; открытие строения ДНК (1953 г.).

Управляемого биосинтеза: 1961 – 1975 гг.: в 1961 г. впервые была установлена способность микроорганизмов к сверхсинтезу определенных веществ (аминокислот, витаминов и т.п.).

Новой биотехнологии: после 1975 г. – базируется на современных достижениях генетической и клеточной инженерии.

Кроме того, возникновение, становление и развитие биотехнологии условно можно подразделить на 4 периода:

Эмперический или доисторический период – самый длительный период, охватывающий примерно 8000 лет. Древние люди интуитивно использовали приемы и способы изготовления пива, хлеба и др. продуктов. В течение нескольких тысячелетий известен уксус, издревле приготавливавшийся в домашних условиях, первая дистилляция вина осуществлена в ХII в., и т.п. К этому же периоду относятся получение кисломолочных продуктов, квашенной капусты, и др.

Таким образом, народы исстари использовали на практике микробиологические процессы, ничего не зная о микробах. Эмпиризм в этот период также был свойственен и в практике использования полезных растений и животных.

Этиологический период в развитии биотехнологии охватывает вторую половину XIX в. и первую треть ХХ в. (1856 – 1933 гг.). Он связан с выдающимися исследованиями Луи Пастера (1822 – 1895 гг.) – основоположника научной микробиологии; вскрывшего микробную природу брожения, доказавшего возможность жизни в бескислородных условиях, опровергшего представления о самопроизвольном зарождении живых существ, создавшего научные основы вакцинопрофилактики и вакцинотерапии, предложившего новый метод стерилизации (пастеризацию).

Этиологический период знаменателен тем, что удалось доказать индивидуальную природу микробов и выделить их в виде чистых культур. Более того, каждый вид мог быть размножен на питательных средах и использован в целях воспроизведения соответствующих процессов (бродильных, окислительных и др.). В этот период было начато изготовление пищевых прессованных дрожжей, некоторых продуктов обмена, ацетона, бутанола, лимонной и молочной кислот. Во Франции приступили к созданию биоустановок для микробиологической очистки сточных вод.

Биотехнический период начался в 1933 г. с публикации работы А. Клюйвера и Л.Х.Ц. Перкина «Методы изучения обмена веществ у плесневых грибов», в которой были изложены основные технические приемы, а также подходы к оценке и интерпретации получаемых результатов при глубинном культивировании грибов. С этого момента началось внедрение в биотехнологию крупномасштабного герметизированного оборудования, обеспечивающего проведение процессов в стерильных условиях.

Примерно за 40 лет третьего периода были решены основные задачи по конструированию, созданию и внедрению в практику необходимого оборудования, в том числе главного из них – биореактора.

Генотехнический период начался с 1972 г.: П. Берг с сотрудниками создали первую рекомбинантную молекулу ДНК.

Таким образом, выяснение механизмов функционирования и регуляции ДНК, выделение и изучение специфичных ферментов привело к формированию строго научного подхода к разработке биотехнологических процессов на основе генно-инженерных работ. В этом и заключается сущность генотехнического периода.

Уже в 1982 г. поступил в продажу человеческий инсулин, выработанный кишечными палочками, несущими в себе искусственно встроенную генетическую информацию о данном гормоне. В настоящее время разрабатываются или уже выпускаются следующие генно-инженерные препараты: интерфероны, интерлейкины, соматотропин. Проводится много работ на стыке генетической инженерии и гибридомной технологии, так производство моноклональных антител, привело к революционным изменениям, в первую очередь, в области диагностики многих инфекционных и неинфекционных заболеваний.

Биотехнология – это область научных исследований, с появлением которой произошел настоящий переворот во взаимоотношениях человека с живой природой. В ее основе лежит перенос единиц наследственности (генов) из одного организма в другой, осуществляемый методами генной инженерии (технология рекомбинантных ДНК). В большинстве случаев целью такого переноса является создание нового продукта или получение уже известного продукта в промышленных масштабах[1].

Действительно, она включает на первый взгляд, совершенно не связанные между собой разделы научных знаний: микробиологию, анатомию растений и животных, биохимию, иммунологию, клеточную биологию, физиологию растений и животных, различные систематики, экологию, генетику, биофизику, математику и много других областей естествознания.

Постоянно увеличивающееся разнообразие современной биологии началось после окончания второй мировой войны, когда в биологию внедрились другие естественнонаучные дисциплины, такие как физика, химия и математика, которые сделали возможным описание жизненных процессов на новом качественном уровне — на уровне клетки и молекулярных взаимодействий.

Именно существенные успехи в фундаментальных исследованиях в области биохимии, молекулярной генетики и молекулярной биологии, достигнутые во второй половине текущего столетия, создали реальные предпосылки управления различными (пусть, возможно, и не самыми главными) механизмами жизнедеятельности клетки. Сложившаяся благоприятная ситуация в биологии явилась мощным толчком в развитии современной биотехнологии, весьма важной области практического приложения результатов фундаментальных наук. Можно с уверенностью утверждать, что биотехнология является наиболее разительным примером того, как результаты, казалось бы «чистой науки», находят применение в практической деятельности человека. Основой, обеспечивающей благоприятную ситуацию для бурного развития биотехнологии, явились революционные открытия и разработки:

Читайте также:  Покруживается голова

Доказательства роли нуклеиновых кислот в хранении и передаче наследственной информации в биологических системах (имеются в виду индивидуальные клетки и отдельные организмы, а не их популяции);

Расшифровка универсального для всех живых организмов генетического кода;

Раскрытие механизмов регуляции функционирования генов в процессе жизни одного поколения организмов;

Совершенствование существовавших и разработка новых технологий культивирования микроорганизмов, клеток растений и животных; как логическое следствие из вышесказанного, явилось создание (возникновение) и бурное развитие методов генетической и клеточной инженерии, с помощью которых искусственно создаются новые высокопродуктивные формы организмов, пригодные для использования в промышленных масштабах.

Расшифровка генома человека.

Абсолютно новым направлением является так называемая инженерная энзимология, возникшая вследствие развития современных методов изучения структуры и синтеза белков-ферментов и выяснения механизмов функционирования и регуляции активности этих соединений (важных элементов клетки). Достижения в этой области позволяют направленно модифицировать белки различной сложности и специфичности функционирования, разрабатывать создание мощных катализаторов промышленно ценных реакций с помощью высоко стабилизированных иммобилизованных ферментов.

Еще статьи по теме

Зрительная сенсорная система
В данной работе произведен некоторый обзор темы пространственной ориентации живых организмов посредством зрительной сенсорной системы. Зрение как сенсорная система есть важное условие для выживания и эволюции любой популяции, по .

Структурная надежность систем
Надежностью называют свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслужив .

Три этапа в развитии биотехнологии. Термин «биотехнология» впервые в 1917 г. применил венгерский инженер К. Эреки (1865— 1933).

Газета «Комсомольская правда» в 2001 г. так описывала колоссальные возможности биотехнологии:

«Японские медики приступили к беспрецедентному эксперименту по выращиванию человеческих органов из клеток зародышей — оплодотворённых яйцеклеток. Культивировать «запчасти» будут из так называемых эмбриональных стволовых клеток, из которых состоит зародыш любого живого существа на начальном этапе развития. Клетки обладают полной генетической информацией и являются предшественниками всех органов человека. Если поместить такую клетку в необходимую питательную среду, из неё можно вырастить какой угодно орган — будь то сердце, печень или нервные волокна».

Можно выделить три этапа становления биотехнологии как отрасли производства, а затем и науки: ранняя биотехнология, новая биотехнология и новейшая биотехнология.

Ранняя, или стихийная, биотехнология связана со знакомыми человеку с древнейших времён микробиологическими процессами. Издавна люди пекли хлеб, готовили сыры и кисломолочные продукты, заквашивали овощи, варили квас и пиво, делали вино. В основе технологии производства всех этих продуктов лежат процессы брожения.

Как вы знаете, в живых организмах ферменты ускоряют множество биохимических процессов. Оказывается, многие ферменты сохраняют свою биологическую активность и вне живой клетки, что стало основой их использования на заре биотехнологии.

Период новой биотехнологии датируется началом XX в., когда впервые удалось вырастить вне живого организма клетки и ткани растений и животных. Начиная с середины 70-х гг. XX в. учёные нашли способы, а инженеры — технические решения по использованию биологических методов для борьбы с загрязнением окружающей среды, производства ценных биологически активных веществ (антибиотиков, ферментов, гормональных препаратов, витаминов и др.), для защиты растений от вредителей и болезней. На основе микробиологического синтеза были разработаны промышленные методы получения белков и аминокислот, используемых в качестве кормовых добавок.

Современный этап развития биотехнологии можно назвать новейшей биотехнологией. Специалистам-биотехнологам стали доступны методы изменения генотипа животных и растений с целью придания им новых свойств и качеств, методы выращивания тканей и органов вне живого организма, получения точных копий родительского организма из одной-единственной его клетки. Достижения новейшей биотехнологии базируются на интеграции таких биологических дисциплин, как физиология, микробиология, биохимия, биофизика, молекулярная генетика, иммунология.

Генная инженерия. В современной биотехнологии выделяют три раздела, три относительно самостоятельных направления; генная (или генетическая) инженерия, клеточная инженерия, биологическая инженерия.

Когда мы хотим отметить какую-либо характерную особенность человека, унаследованную им от родителей, например склонность к творчеству, высокий интеллект или, напротив, вредную привычку, мы сокрушённо вздыхаем: «Что поделаешь, это гены!» Что же это за таинственные гены, делающие нас похожими на своих родителей?

Напомним, что в ядрах клеток живых организмов содержатся хромосомы. Основу любой хромосомы составляет макромолекула дезоксирибонуклеиновой кислоты (ДНК) очень большой длины. Как вы знаете, полимерная молекула ДНК состоит из двух параллельных нитей-макромолекул, связанных друг с другом водородными связями. Каждая «нить» представляет собой последовательно соединённые друг с другом нуклеотиды и напоминает очень длинные бусы. Например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 млн «бусинок»-нуклеотидов. Макромолекула ДНК скручена в спираль (рис. 144), поэтому её размер обычно не превышает 20 мкм, а в растянутом виде длина хромосомы человека может достигать 5 см. Помимо ДНК в состав хромосомы входят молекулы белков.

Читайте также:  Как происходит стимуляция яичников

Рис. 144. Зашифрованная наследственная информация в геноме человека

Вы знаете, что под влиянием факторов внешней среды у всех видов живых организмов происходят мутации.

Можно ли провести мутацию искусственным путём, т. е. внедрить в ДНК новый, несвойственный данному организму ген? Ведь таким образом можно «привить» живому организму полезное качество, которого у него не было. В 1973 г. американские учёные С. Коэн и Э. Чанг встроили в ДНК бактерии участок ДНК лягушки. Свершилось небывалое: бактерия стала вырабатывать белок, характерный для лягушки, и даже передавать лягушечью ДНК потомкам! Так была показана принципиальная возможность встраивать чужие гены в геном определённого организма.

Последние десятилетия генная инженерия поистине творит чудеса. Японским учёным удалось ввести в ДНК свиней ген шпината, в результате чего мясо стало менее жирным. Генетически модифицированные растения произрастают уже на миллионах гектаров сельскохозяйственных угодий. Они отличаются от своих «собратьев» большей урожайностью, устойчивостью к вредителям, болезням и засухе, большим содержанием полезных питательных веществ.

Трансгенная кукуруза добавляется в кондитерские и хлебобулочные изделия, безалкогольные напитки; модифицированная соя входит в состав рафинированных масел, маргаринов, жиров для выпечки, соусов для салатов, майонезов, макаронных изделий, варёных колбас, кондитерских изделий, белковых биодобавок, кормов для животных и даже в состав детского питания.

Создание генетически модифицированных растений, устойчивых к сорнякам и вредителям, в несколько раз уменьшает расход гербицидов и ослабляет тем самым химическую нагрузку на окружающую среду. В сельскохозяйственную практику входят трансгенные сорта с повышенными потребительскими свойствами, например гороха, сои, злаков с улучшенным составом белков. Созданы трансгенные помидоры без зёрнышек, на подходе бескосточковые черешня, цитрусовые. Выведен даже сорт кубических арбузов (рис. 145), которые экономически выгодно транспортировать и складировать за счёт более плотной укладки. Методами генной инженерии канадскими учёными получен виноград, которому пересажен ген морозоустойчивости от дикой капусты, и в Канаде появились виноградники.

Рис. 145. Генно-модифицированные арбузы

В животноводстве с помощью генной инженерии получены высокопродуктивные породы животных — овец, свиней, кур.

В фармакологии методы генной инженерии дали возможность получить высокоэффективные вакцины против герпеса, туберкулёза, холеры; в нефтехимической промышленности — новые формы дрожжей и бактерий, способных уничтожать разливы нефти.

Вспомним, что гены — это участки ДНК хромосомы (несколько последовательно соединённых нуклеотидов), несущие информацию о строении одной молекулы белка или молекулы рибонуклеиновой кислоты (РНК), характерных для данного живого организма. Совокупность всех генов организма, содержащихся в хромосомах, называется геномом. По сути, геном — это зашифрованная информация об организме, инструкция по его рождению, росту, внешнему виду и поведению, размножению, старению и гибели. Представьте, что перед вами разобранный до мельчайших деталей игрушечный космический корабль. К нему придана инструкция по сборке — своеобразный «геном». Шаг за шагом, следуя инструкции, вы собираете космический аппарат. Естественно, в конечном счёте он должен выглядеть так, как показано на рисунке, а не превратиться в трактор или автомобиль. Если сборка проведена верно, ваш корабль будет представлять собой точную модель натурального объекта, который может взлететь и полностью выполнить программу космического полёта. Живой организм, в отличие от неодушевлённой конструкции, должен ещё оставить потомство, передав ему точную копию «технической характеристики» и «инструкцию по сборке» последующих поколений.

Клеточная инженерия. В самом начале XX в. учёные-ботаники впервые высказали мысль о том, что если живую клетку извлечь из организма, то в питательной среде она сможет существовать, функционировать и даже размножаться. Спустя несколько лет эту гипотезу удалось экспериментально подтвердить на животных клетках, а в 30-х гг. прошлого столетия — на клетках растений.

Суть метода клеточной инженерии схематично можно описать так. От живого организма, например растения, берётся небольшой кусочек ткани, скажем, листовой пластинки. Мы помним, что каждая клетка хранит в себе полный набор генов (геном) этого растения, но функции клеток дифференцированны, т. е. клетки листочка отличаются от клеток стебля, корня или цветка. Следовательно, задача клеточной инженерии на первом этапе — сделать так, чтобы клетки листа «забыли» о своей миссии и превратились просто в набор растительных клеток. Полученная масса клеток делится, размножается, растёт их число, образуется целая клеточная колония, называемая каллусной тканью. Её можно разделить на несколько частей, а далее вновь превратить клетки каллусной ткани в клетки нужного органа растения: корня, листа или верхушечной почки. Достигается это введением в питательную среду особых химических веществ — фитогормонов. И вот уже каждый отдельный кусочек каллусной ткани приобретает вид маленького растения, способного к самостоятельному росту и развитию. Из небольшого кусочка листа мы получили десяток новых растений — точных копий родительского организма.

Вершиной достижений клеточной инженерии можно считать клонирование организмов — создание точной копии живого существа. Выведенные российским генетиком и селекционером академиком В. А. Струнни-ковым (1914—2005) клоны шелкопряда известны на весь мир: искусственно полученные насекомые трудятся над производством шёлковой нити куда лучше своих природных собратьев. Наиболее известный феномен клеточной инженерии — клонирование домашних животных. В 1997 г. весь мир облетела весть об овечке Долли — клоне своей матери (рис. 146).

Читайте также:  Можно ли мазать синяки йодом

Рис. 146. Клонированная овечка Долли — точная копия материнского организма

Долли появилась на свет в июле 1996 г. благодаря клеточной инженерии. Однако клонирование животных на сегодняшний день представляет главным образом научный интерес. А вот выращивание новых тканей организма из отдельных клеток — уже реальность. Из клеток почки человека можно вырастить новый полноценный орган, который, в отличие от донорской почки, при пересадке не будет отторгаться организмом. Более того, появляется возможность производить ремонт повреждённого органа или выращивать запасной непосредственно в организме, а не в пробирке. Поистине клеточная инженерия способна творить чудеса!

Наиболее перспективным направлением сегодня является клонирование с использованием так называемых эмбриональных стволовых клеток. Вы прекрасно понимаете, что все клетки эмбриона в момент зачатия одинаковы. Главным свойством таких клеток является то, что генетическая информация, заключённая в их ядре, находится как бы в состоянии покоя, т. е. эмбриональные стволовые клетки ещё не запустили программы дифференциации в ту или иную ткань или орган. Удивительная способность этих клеток стать любыми клетками организма продиктована наличием в их ДНК всех генов, отвечающих за рост зародыша на ранней стадии развития эмбриона, т. е. генома. После получения специального сигнала эмбриональные стволовые клетки начинают своё превращение в клетки мозга, печени, сердца и т. д. Уникальность эмбриональных стволовых клеток также позволяет использовать их для выращивания огромного массива тканей и в принципе любого человеческого органа.

В биотехнологическом производстве клоны клеток используют как своеобразные химические фабрики для промышленного получения биологически активных веществ. Например, гормона эритропоэтина, который стимулирует образование красных кровяных телец, а также используется для предотвращения образования тромбов в кровеносных сосудах. Методами клеточной инженерии получены факторы свёртываемости крови для лечения страшного заболевания — гемофилии, инсулин для лечения диабета.

Биологическая инженерия. Вам хорошо известно, что все встречающиеся в природе живые организмы содержат ферменты — биологические катализаторы белковой природы, ускоряющие и регулирующие протекание миллионов биохимических реакций.

Задача биологической инженерии состоит в разработке технологии промышленного получения практически важных веществ или осуществления промышленных процессов при участии ферментов, как содержащихся в микроорганизмах, так и выделенных в свободном состоянии.

Ферментативные процессы сегодня используются во многих отраслях промышленности:

  • в пищевой — для выпечки хлеба, получения кисломолочных продуктов, производства сыров, осветления соков и др.;
  • в кожевенной и текстильной — для отделения шерсти от шкур и выделки кожи;
  • в фармацевтической — для получения лекарственных препаратов;
  • в сельском хозяйстве — для защиты растений от вредителей и профилактики заболеваний.

Микробиологические технологии используют сегодня в такой необычной для биотехнологии сфере, как металлургия. Например, известно, что более 75% запасов золота находится в природе не в виде самородков или золотого песка, а в виде вкраплений внутри кристаллических решёток сульфидных минералов — пирита (FeS2) и арсенопирита (FeAsS). Такое золото совершенно невозможно увидеть невооружённым глазом, а для его извлечения требуется химическое разрушение кристаллической решётки минерала — так называемое вскрытие породы. Как правило, вскрытие сульфидных минералов проводят обжигом руды. Но при этом в атмосферу выбрасывается огромное количество оксидов серы, потенциально опасных для окружающей среды и человека. Как альтернатива обжигу была разработана технология микробиологического вскрытия пород. Для этого руду измельчают и помещают в раствор кислоты с добавлением особых микроорганизмов. Они окисляют ионы двухвалентного железа до трёхвалентного, а атомы серы — до анионов серной кислоты. Продукты окисления растворяются в воде, а в нерастворимом осадке остаётся чистое золото. Процесс протекает с минимальными энергозатратами при комнатной температуре и значительно более эффективен, чем химические технологии. В Канаде, ЮАР и Португалии практикуется аналогичное извлечение урана из урансодержащих руд.

Стоит отметить также законченную в Институте микробиологии РАН работу над новым способом удаления метана в шахтах с использованием метанотрофных (питающихся метаном) бактерий. Нужно ли говорить об актуальности этой работы на фоне сообщений средств массовой информации о трагедиях на угольных шахтах!

Наиболее перспективным направлением биологической инженерии является создание иммобилизованных ферментов.

Такие ферменты широко применяются на производстве. Например, получаемая из дрожжей (рис. 147) инвертаза используется для изготовления искусственного мёда, лак-таза — для производства концентрированных кисломолочных продуктов без консервантов, а уреаза — для очистки крови в аппарате «искусственная почка».

Рис. 147. Мембрана с иммобилизованными клетками дрожжей

К иммобилизованным ферментам относятся бактериальные протеазы, которые применяются для производства синтетических моющих средств (энзимы, содержащиеся в них, позволяют удалять с тканей пятна крови, чая и т. д.), в кожевенном производстве (для удаления шерсти и дубления кож), резинотехнической промышленности (для получения губчатого латекса путём ферментативного разложения пероксида водорода).

Поистине прав был М. В. Ломоносов, сказав: «Широко распростирает химия руки свои в дела человеческие!»

Далее речь пойдёт о нанотехнологии, мы выясним, что она собой представляет, где применяется и какое имеет значение для развития энергетики, электроники, сельского хозяйства.

Ссылка на основную публикацию
Эрозия привратника желудка лечение
Эрозия желудка (от лат. erosio – разъедание) — это дефект слизистой оболочки без распространения на нижележащие слои стенок желудка. Определяется...
Эпинефрин синонимы
Фармдействие Альфа- и бета-адреностимулирующее средство. На клеточном уровне действие обусловлено активацией аденилатциклазы на внутренней поверхности клеточной мембраны, повышением внутриклеточной концентрации...
Эпителиальная неоплазия сигмовидной кишки
Государственный НаучныйЦентр Колопроктологии Ассоциация КолопроктологовРоссии На Главную О Нас Новости ГНЦК История центра Руководитель Администрация Сотрудники О противодействии коррупции Сведения...
Эрозия шейки матки опасность
Что такое эрозия шейки матки? Этим термином называют два разных состояния: врожденную эктопия шейки матки и истинную эрозию шейки матки....
Adblock detector