Сердечная мышечная ткань фото

Сердечная мышечная ткань фото

Участок сердца, отпечатанный на 3D-принтере, сам выдает информацию о своем состоянии

Об авторе: Игорь Эруандович Лалаянц – кандидат биологических наук.

Изгиб сенсора (черный) в результате сокращения мышечных волокон. Фото Physorg

В деревянные или каменные ящики для мумифицированных останков усопших жрецы клали прекрасно иллюстрированные папирусы, получившие у египтологов жаргонное название «Книга мертвых». На самом деле их название переводится как «Изречения выхода в день», необходимые для преодоления всех опасностей потустороннего мира. Одной из них был суд могущественных богов – крокодила Собека и ибисоголового Тота (в честь которого – первый иероглиф в имени Тут-анх-Амона), соколоподобного Гора – сына Изиды и Осириса, а также Анубиса с головой собаки, который взвешивал извлеченное сердце умершего. Сердце считалось вместилищем души, поскольку жрецы не знали, что сердце «управляется» эмоциями, порождаемыми в мозге.

Наш мышечный мотор представляет собой совокупность многих тканей и клеточных типов, да и сама сердечная мышца сочетает в себе признаки гладкой и поперечно-полосатой мускулатуры. Добавьте к этому, что ее волокна образуют в местах соединения сложный «интерфейс» с сосцевидными выростами-ворсинами, получившими название вставочные, или интеркалярные диски. Даже это краткое упоминание говорит о чрезвычайной сложности строения мышцы сердца, которая поражается при инфаркте, или закупорки (infarcto переводится как «пробка») той или иной коронарной артерии. Можно упомянуть, что три четверти людей на планете погибает в результате сердечно-сосудистых заболеваний.

Врачи вот уже более полувека пытаются механически и фармакологически помочь жертвам инфаркта: проталкивают тромб с помощью зонда, растворяют выпавший в полости сосуда нерастворимый фибрин с помощью стрептокиназы, вставляют в полость сосуда пружинку – стент. Однако все это не «спасает» саму сердечную мышцу, участок которой омертвел в результате нарушения питания.

Решение проблемы не так давно виделось в использовании так называемых плюрипотентных клеток, «потомков» фибробластов кожи. К сожалению, полученные таким образом клетки плохо управляемы в плане получения из них именно мышечных клеток сердца.

Специалисты Гарварда, предложившие сердечный «орган»-на-чипе (organ-on-a-chip), такой глобальной задачи перед собой не ставили. По их мнению, микрофабрикация сердечной мышцы открывает новые перспективы тканевого биоинжиниринга. Чисто техническим преимуществом исследовательского подхода является возможность интегрирования встроенных сенсоров, «улавливающих» мышечное сокращение и сигнализирующих о нем.

В основе 3D-печати мышечных волокон лежит полностью автоматизированный и управляемый с помощью компьютера процесс быстрого производства произвольного количества нужной ткани. Сами ученые называют полученные ткани микрофизиологическими системами, учитывающими изменения клеток данного человека при тех или иных заболеваниях. Программируемый подход со встроенными сенсорами дает возможность быстро менять условия, существенно ускоряя и удешевляя сбор информации. Такой метод позволит во многом отказаться от дорогостоящих испытаний на животных. В Гарварде «делают» не только сердечную мышцу, но также ткань легких и почек, языка и кишечника.

Впрочем, не надо думать, что все просто и легко. Требования к чистоте производственных линий и помещений в данном случае выше, чем при создании электронных чипов. В Гарварде, в данном конкретном случае, удалось практически полностью исключить человека. Новый конвейер стал возможным благодаря новым «чернилам» для 3D-печати с использованием многих клеток. Это очень важно даже в таком «простом» случае, как сердечная мышца.

Исследователями было разработано шесть клеточных «чернил» и гибкие нитчатые сенсоры, меняющие свою кривизну в результате сокращения мышцы. Созданное таким образом сердце на чипе представляет на самом деле микрофизиологическое устройство, которое стало первой разработкой в плане получения интегрированных функциональных материалов – живых и неживых сенсоров. Новые чипы, по мнению их создателей, станут полностью функциональными инструментами для лекарственного скрининга и моделирования различных заболеваний.

Читайте также:  Почему болит задний проход у женщин

Сам чип представляет собой плату со многими лунками, что позволяет одновременно изучать поведение разных тканевых «композитов». Ученые с помощью этого чипа проверили действие различных лекарств и долговременные изменения сократительной способности созданных ими мышечных волокон. Интегрированные рецепторы позволили проводить сбор данных о созревании волокон в онлайн-режиме. Также было проверено и действие различных токсинов.

Инженерную мышечную ткань авторы назвали анизотропной, то есть «неравномерно» проявляющей свои сократительные свойства, в результате чего происходит изгиб сенсорного рычажка. Важно то, что изменение кривизны пропорционально сократительному «стрессу» (сокращению) мышечной ткани. Для визуализации живых клеток использовалось иммуноокрашивание – использование антител к специфическим протеинам мышцы.

В далеком 1978 году в Калифорнии пионеры биотехнологии сообщили об успешной интеграции первого человеческого гена с геномом кишечной палочки. Вскоре за этим последовал первый интерферон, затем моноклональные антитела и манипулирование генами на уровне ДНК. Хочется надеяться, что сердечникам, благодаря биоинженерии, не придется ждать полвека избавления от той же аритмии и последствий инфаркта.

Гистогенез сердечной мышечной ткани. Источники развития сердечной мышечной ткани находятся в прекардиальной мезодерме. В гистогенезе возникают парные складчатые утолщения висцерального листка спланхнотома — миоэпикардиальные пластинки, содержащие стволовые клетки сердечной мышечной ткани. Последние путем дивергентной дифференцировки дают начало следующим клеточным дифферонам: рабочим, ритмзадающим (пейсмекерным), проводящим и секреторным кардиомиоцитам.

Исходные клетки сердечной мышечной ткани — кардиомиобласты характеризуются рядом признаков: клетки уплощены, содержат крупное ядро, светлую цитоплазму, бедную рибосомами и митохондриями. В дальнейшем происходит развитие комплекса Гольджи, гранулярной эндоплазматической сети. В кардиомиобластах обнаруживаются фибриллярные структуры, но миофибрилл нет. Клетки обладают высоким пролиферативным потенциалом. После ряда митотических циклов кардиомиобласты дифференцируются в кардиомиоциты, в которых начинается саркомерогенез. В цитоплазме кардиомиоцитов увеличивается число полисом, канальцев гранулярной эндоплазматической сети, накапливаются гранулы гликогена, возрастает объем актомиозинового комплекса. Кардиомиоциты сокращаются, но не теряют способность к дальнейшей пролиферации и дифференцировке. Развитие сократительного аппарата в позднем эмбриональном и постнатальном периодах происходит путем надставки новых саркомеров и наслоения вновь синтезированных миофиламентов. Дифференцировка кардиомиоцитов сопровождается увеличением числа митохондрий, распределением их у полюсов ядер и между миофибриллами и протекает параллельно со специализацией контактирующих поверхностей клеток. Кардиомиоциты путем контактов «конец в конец», «конец в бок» формируют клеточные комплексы — сердечные мышечные волокна, и в целом ткань представляет собой сетевидную структуру.

Строение сердечной мышечной ткани.

Структурно-функциональные единицы волокон — кардиомиоциты — это клетки, имеющие вытянутую прямоугольную форму. Длина рабочих кардиомиоцитов составляет 50-120 мкм, а ширина — 15-20 мкм. Одно-два ядра располагаются в центре клетки. Периферическую часть цитоплазмы кардиомиоцитов занимают поперечноисчерченные миофибриллы, аналогичные таковым в симпластах скелетномышечного волокна. Однако каналы саркоплазматической сети и Т-системы менее отчетливо выражены. Кардиомиоциты отличаются большим количеством митохондрий, расположенных тесными рядами между миофибриллами. Снаружи миоциты покрыты сарколеммой, в составе которой выделяются плазмолемма и базальная мембрана. Характерной особенностью ткани является наличие вставочных дисков на границе между контактирующими кардиомиоцитами. Вставочные диски пересекают волокно в виде волнистой или ступенчатой линии и включают межклеточные контакты от простых, по типу десмо-сом и до щелевых (нексусов).

Часть кардиомиоцитов на ранних этапах кардиомиогенеза являются сократительно-секреторными. В дальнейшем в результате дивергентной дифференцировки возникают «темные» (сократительные) и «светлые» (проводящие) миоциты, в которых исчезают секреторные гранулы, тогда как в предсердных миоцитах они сохраняются. Так формируется дифферон эндокринных кардиомиоцитов. Эти клетки содержат центрально расположенное ядро с диспергированным хроматином,

1-2 ядрышками. В цитоплазме хорошо развиты гранулярная эндоплазматическая сеть, диктиосомы комплекса Гольджи, в тесной связи с элементами которого находятся многочисленные секреторные гранулы диаметром около 2 мкм, содержащие электронноплотный материал. В дальнейшем секреторные гранулы обнаруживаются под сарколеммой и выделяются в межклеточное пространство путем экзоцитоза. Выделенный пептидный гормон кардиодилатин циркулирует в крови в виде кардионатрина, который вызывает сокращение гладких миоцитов артериол, увеличение почечного кровотока, ускоряет клубочковую фильтрацию и выделение натрия из организма.

Читайте также:  Крем от аллергической сыпи на лице

Кардиомиоциты проводящей системы гетероморфны. В них слабо развит мио-фибриллярный аппарат, расположение миофиламентов в составе миофибрилл рыхлое, Z-линии имеют неправильную конфигурацию, эндоплазматическая сеть слабо развита, находится на периферии миоцитов, число митохондрий незначительное. По мере расположения этих кардиомиоцитов в проксимо-дистальном направлении соответственно движению импульсов от синусно-предсердного узла, через предсердно-желудочковый узел, пучок Гиса, его ножки и клетки Пуркиня к рабочим миоцитам проводящие кардиомиоциты по своей ультраструктуре приближаются к рабочим кардиомиоцитам.

Регенерация сердечной мышечной ткани.

В гистогенезе сердечной мышечной ткани специализированный камбий не возникает. Поэтому регенерация ткани протекает на основе внутриклеточных гиперпластических процессов. Вместе с тем для кардиомиоцитов млекопитающих, приматов и человека характерен процесс полиплоидизации. Например, у обезьян ядра до 50% терминально дифференцированных кардиомиоцитов становятся тетра- и октоплоидными. Полиплоидные кардиомиоциты возникают за счет ацитокинетического митоза, что приводит к многоядерности.

В условиях патологии сердечно-сосудистой системы человека (ревматизм, врожденные пороки сердца, инфаркт миокарда и другие) важная роль в компенсации повреждений кардиомиоцитов принадлежит внутриклеточной регенерации, полиплоидизации как ядер, так и кардиомиоцитов.

Мышечные ткани — это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов — клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.

Свойства и виды мышечной ткани

Морфологические признаки:

  • Вытянутая форма миоцитов;
  • продольно размещены миофибриллы и миофиламенты;
  • митохондрии находятся вблизи сократительных элементов;
  • присутствуют полисахариды, липиды и миоглобин.

Свойства мышечной ткани:

  • Сократимость;
  • возбудимость;
  • проводимость;
  • растяжимость;
  • эластичность.

Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:

  1. Поперечнополосатая: скелетная, сердечная.
  2. Гладкая.

Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:

  • Мезенхимные — десмальный зачаток;
  • эпидермальные — кожная эктодерма;
  • нейральные — нервная пластинка;
  • целомические — спланхнотомы;
  • соматические — миотом.

Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.

Строение и функции гладкой мышечной ткани

Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.

У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).

Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.

Функции гладкой мышечной ткани:

  • Поддерживание стабильного давления в полых органах;
  • регуляция уровня кровяного давления;
  • перистальтика пищеварительного тракта, перемещения по нему содержимого;
  • опорожнение мочевого пузыря.

Строение и функции скелетной мышечной ткани

Cостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.

Мышечное волокно поперечнополосатой ткани покрыто оболочкой — сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями — миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка — актина, аболее толстые — из миозина.

Читайте также:  Дисфазия развития речи

При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.

Функции скелетной мышечной ткани:

  • Динамическая — перемещение в пространстве;
  • статическая — поддержание определенной позиции частей тела;
  • рецепторная — проприорецепторы, воспринимающие раздражение;
  • депонирующая — жидкость, минералы, кислород, питательные вещества;
  • терморегуляция — расслабление мышц при повышении температуры для расширения сосудов;
  • мимика — для передачи эмоций.

Строение и функции сердечной мышечной ткани

Миокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.

Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной — до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.

Вторая разновидность клеток миокарда — это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.

Функции сердечной мышечной ткани:

  • Насосная;
  • обеспечивает ток крови в кровеносном русле.

Компоненты сократительной системы

Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.

В цитоплазме мышечных клеток имеются особые сократительные нити — миофибриллы, сокращение которых возможно при содружественной работе белков — актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O2 резко снижается.

Таблица. Соответствие между характеристикой мышечной ткани и ее видом

Вид ткани Характеристика
Гладкомышечная Входит в состав стенок кровеносных сосудов
Структурная единица – гладкий миоцит
Сокращается медленно, неосознанно
Поперечная исчерченность отсутствует
Скелетная Структурная единица – многоядерное мышечное волокно
Свойственна поперечная исчерченность
Сокращается быстро, осознанно

Где находится мышечная ткань?

Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.

Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.

Чем мышечное волокно скелетной мышцы отличается от гладкой мышечной ткани?

Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.

В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.

Ссылка на основную публикацию
Семя льна при панкреатите как принимать
Семя льна человек употребляет издавна. Много лет назад люди употребляли его в пищу во многих странах. В России льняное семя...
Селедка под шубой при гастрите
Гастрит накладывает ограничения на питание, в частности под запрет попадают и салаты из-за их вредной заправки – майонеза, растительного масла...
Селезенка животных анатомия
У крупного рогатого скота селезёнка (рис. 144—Б) плоская, длинная, довольно широкая, с округлёнными концами, дорзальным и вентральным, с тонкими прямыми,...
Семявыводящий проток воспаление симптомы
Инфекции в малом тазу провоцируют множество тяжелых воспалительных процессов. Один из них – фуникулит, или воспаление семенного канатика. Заболевание редко...
Adblock detector